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Abstract

A theoretical model for 1H–1H dipolar nuclear spin relaxation for a bi-spaced periodic one-dimensional array of spin 1/2 nuclei has
been developed. A diffusion equation is formed for such a system by assuming nearest-neighbor interaction and isotropic random molec-
ular reorientations. Under spin-diffusion conditions (xsc� 1), this equation has been solved using Laplace transform for an infinite
chain. The results are presented for the boundary conditions described for truncated driven Nuclear Overhauser effect experiments.
The solution is further generalized by making the inter-spin spacing as a random variable with a Gaussian distribution.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Spin diffusion; Nuclear Overhauser effect; Relaxation
1. Introduction

The transfer of magnetization from one spin to another
via inter-nuclear dipolar interaction acting as a relaxation
mechanism in liquids is known as Nuclear Overhauser
effect (NOE). While the heteronuclear NOE is used to
enhance the signal of nuclei with low gyro-magnetic ratio
(c), the proton–proton NOE’s are used to study the solu-
tion structures of organic and bio-molecules [1–3]. The
observed polarization of a spin, while saturating a nearby
spin, can show an increase (positive NOE) or decrease
(negative NOE) depending on the relative signs and magni-
tudes of c of the two nuclei and the time scale of the
motional processes of the molecules. The homonuclear
NOE for organic and small bio-molecules which reorient
rapidly such that xsc� 1 (where x is the Larmor frequen-
cy and sc is the correlation time of the isotropic random
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motion), is positive, weak, and does not migrate to many
spins. On the other hand, for large bio-molecules, where
xsc� 1, NOE is negative, large in magnitude, and
migrates over long distances within the molecule. This limit
is therefore often referred as ‘‘spin-diffusion’’ limit [4–6].

It has been shown by Krishnan et al. [7,8] that in the
spin-diffusion limit, the migration of spin magnetization
in an one-dimensional chain can be described by a diffusion
equation. The assumption of equidistant one-dimensional
chain is well suited for systems such as helical peptides
and proteins, which are deuterated at all positions except
labile amide protons. In such cases, dN,N+1, the distance
between adjacent amide protons (denoted in literature as
dNN(i, i + 1)), is short (�2.8 Å) [9] and shows pronounced
sequential NOEs. However, in extended b sheet conforma-
tions of peptides and proteins in which the side chains are
deuterated, the NH i � Ca

i�1H distance (denoted as
daN (i, i + 1)) is of the order of 2.2 Å, while the
NH i � Ca

i H distance (dNa (i, i)) is about 2.8 Å and the
inter-spin distance is bi-spaced periodic as shown in
Fig. 1 [9]. This continues throughout the chain. Similar
distance pattern exist in other secondary structures for
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Fig. 1. Schematic diagram of short sequential 1H–1H connectivity in polypeptide segment of secondary structures. In extended b sheet conformation the
NHi � Ca

iþ1H distance (daN) is of the order of 2.2 Å, while the NHi � Ca
i H distance (dNa) is about 2.8 Å [9].

114 M. Kotecha et al. / Journal of Magnetic Resonance 181 (2006) 113–118
example alpha helical daN (i, i + 1) = 3.5 Å, dNa (i, i) = 2.2 to
2.8 Å depending on U. 310 helical chain daN (i, i + 1) =
3.4 Å and dNa (i, i) = 2.7 Å [data from [9]]. Such a chain will
be not linear but the migration of magnetization will be
uni-directional (either forward or backward) and it can
be considered as one-dimensional chain because all other
leakage paths are blocked by the process of deuteration.
Here, we are considering only intra-molecular NOE, ignor-
ing inter-molecular NOEs. Also, in flexible polypeptide
chains where most NOEs are quenched by motion, chain
remains practically one-dimensional. In the present paper,
we have therefore extended the one-dimensional equidis-
tant model to bi-spaced periodic lattice model. The general
rate equations for the spin populations have been formed
and are solved for specific initial and boundary conditions
for driven NOE experiment. For the future, we plan to
extend current model to two- and three-dimensions to incor-
porate all NOE connectivities in protein conformations.

The distance measurement using NOE data and its mod-
eling assumes fixed 1H–1H distances as taken by [7]. The
real systems, such as proteins and nucleic acids in solution
at ambient temperature, are not rigid. The interpretation of
observed NOE for flexible system presents a difficult prob-
lem and needs to address theoretically [2]. In order to
account for motional fluctuation of distance vector, the
equidistance model of [7] is further extended for a one-di-
mensional stochastic chain having random inter-molecular
distance with a Gaussian distribution.

It may be mentioned that Krishnan et al. [7] have
shown that the migration of magnetization in a one-
dimensional chain can be described by a second order
diffusion equation only for driven NOE experiments in
which the irradiated spin is assumed to be saturated
for all times. It has been further shown by them that
in experiments utilizing transient NOE, where the irradi-
ated spin is selectively inverted at t = 0 and the migra-
tion of magnetization is monitored at other spins,
higher order terms in the Taylor expansion are needed
and the migration of magnetization can no longer be
described by a second order ‘‘diffusion equation’’ [8].
In the following we therefore consider only the driven
NOE experiment.
2. Spin-diffusion equation for bi-spaced lattice

A one-dimensional homo-nuclear chain of bi-spaced
periodic lattice of spin 1/2 having dipolar coupling only
is considered. It is assumed that each spin interacts with
its nearest neighbor only. The spatial coordinates for
these spins along one dimension have positions . . .
x � 2b � a,x � b � a,x � b,x,x + a,x + a + b,x + 2a + b

. . . (Fig. 2). The population of the lower level of the spin
at position x and time t is denoted by n+ (x, t) and that of
the upper level as n�(x, t) as shown in Fig. 2. The rate of
change n+ (x, t) can be written as

onþ
ot
ðx; tÞ

¼�nþðx; tÞW 1a� nþðx; tÞW 1bþ n�ðx; tÞW 1aþ n�ðx; tÞW 1b

� nþðx; tÞn�ðxþ a; tÞW 0aþ n�ðx; tÞnþðxþ a; tÞW 0a

� nþðx; tÞn�ðx� b; tÞW 0bþ n�ðx; tÞnþðx� b; tÞW 0b

� nþðx; tÞnþðxþ a; tÞW 2aþ n�ðx; tÞn�ðxþ a; tÞW 2a

� nþðx; tÞnþðx� b; tÞW 2bþ n�ðx; tÞn�ðx� b; tÞW 2b; ð1Þ

where W0r, W1r, and W2r (r = a,b) are, respectively, the
zero, single, and double quantum transition probabilities
with inter-spin spacing as r for a pair of spin 1/2 homo-
nuclear spin system and are given by [10,11]:

W 0r ¼
1

10

c4�h2

r6
sc;

W 1r ¼
3

20

c4�h2

r6

sc

1þ x2
xs

2
c

� �
;

W 2r ¼
3

5

c4�h2

r6

sc

1þ 4x2
xs

2
c

� �
; ð2Þ

with sc as the isotropic rotational correlation time. An
expression similar to Eq. (1) can be written for n� (x, t).
The magnetization would be proportional to
N (x, t) = [n+ (x, t) � n� (x, t)]. The rate of change of
N (x, t) is obtained as

oNðx; tÞ
ot

¼ �2qNðx; tÞ � raNðxþ a; tÞ � rbNðx� b; tÞ; ð3Þ

where



Fig. 2. Schematic energy level diagram of spins (I = 1/2) in a bi-spaced one-dimensional chain. W0a (or W0b) are the Mutual flip-flop term of the dipolar
Hamiltonian, where spin at x goes up and spin at x + a (or x � b) comes down. W2a (or W2b) is the double quantum transition probability which represent
the simultaneous upward (or downward) flip of the pair of the spin. W1a (or W1b) is the single quantum transition probability and counted twice for each
pair of spin.
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qa ¼ 2W 1a þ W 0a þ W 2a;

qb ¼ 2W 1b þ W 0b þ W 2b;

q ¼ 1
2
ðqa þ qbÞ;

ra ¼ W 2a � W 0a;

rb ¼ W 2b � W 0b.

Expanding N (x + a, t) and N (x � b, t) using Taylor series
expansion about x gives,

Nðxþ a; tÞ ¼ Nðx; tÞ þ a
1!

oNðx; tÞ
ox

þ a2

2!

o2Nðx; tÞ
ox2

þ � � �

Nðx� b; tÞ ¼ Nðx; tÞ � b
1!

oNðx; tÞ
ox

þ b2

2!

o2Nðx; tÞ
ox2

þ � � �
ð4Þ

Substituting Eq. (4) into Eq. (3) and retaining the terms up
to second order yields,

oN
ot
ðx; tÞ ¼ �2ðqþ rÞNðx; tÞ � d

oN
ox
ðx; tÞ þ D

o
2N

ox2
ðx; tÞ;

ð5Þ
where

r ¼ 1
2
ðra þ rbÞ;

q ¼ 1
2
ðqa þ qbÞ;

d ¼ ara � brb;

D ¼ �1
2
½a2ra þ b2rb�.

This diffusion equation is similar to the Eq. (7) of [7] for
equidistant spins, except the additional term containing d.
d represents difference between the migration of magnetiza-
tion in opposite directions from each spin.

By using the substitution

Nðx; tÞ ¼ e�2ðqþrÞtlðx; tÞ; ð6Þ
Eq. (5) reduces to

ol
ot
ðx; tÞ ¼ �d

ol
ox
ðx; tÞ þ D

o2l
ox2
ðx; tÞ. ð7Þ

This equation would now be solved using suitable initial
and boundary condition by method of Laplace transform
[12,13]. Taking Laplace transform of Eq. (7) gives

D
o

2L
ox2
ðx; sÞ � d

oL
ox
ðx; sÞ � sLþ lðx; 0Þ ¼ 0; ð8Þ
where L (x, s) is the Laplace variable of l (x, t). The solution
of this second order differential equation can be written as

Lðx; sÞ ¼ lðx; 0Þ
s
þ Ce�qx þ C0eq0x; ð9Þ

where

q ¼ �dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4sD

p
2D

; q0 ¼ dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4sD

p
2D

;

and C and C 0 are the constants to be determined from the
boundary conditions. Since q 0 is always positive, C 0 should
be zero due to boundness condition. Therefore, Eq. (9) is
reduced to

Lðx; sÞ ¼ lðx; 0Þ
s
þ Ce�qx. ð10Þ
3. Boundary condition for driven NOE

In the driven NOE experiment, a large rf saturates the
selected spin and the migration of magnetization to the
other spins is monitored as a function of time. Though
not strictly valid, the irradiated spin is assumed to be satu-
rated at all times. Substituting for the first boundary condi-
tion names the spin at x = 0 is assumed to be saturated at
all times, yields

Nðx; tÞ ¼ �I0
z at x ¼ 0 for all t.

Substituting this in Eq. (6) gives

lð0; tÞ ¼ �I0
z e2ðqþrÞt. ð11Þ

Further substituting the second boundary condition that
all spins at x „ 0 are at thermal equilibrium at t = 0, gives

Nðx; tÞ ¼ 0 for x 6¼ 0 at t ¼ 0;

we get

lðx; 0Þ ¼ 0. ð12Þ

Also, it is assumed that the chain is infinite in length such
that at x =1, the system remains in thermal equilibrium
at all times, yielding

N 0ðx; tÞ ¼ 0 at x ¼ 1 for all t



Fig. 3. (A) The plot of NOE (g) in driven NOE experiment for the spin at
x = a in the infinite chain for different ratio of b/a such as 0.8 (-.-),
1.0 (-d-), 1.2 (-w-) as a function of time when the spin at x = 0 is assumed
to be saturated for all time. The parameters used are a = 2 Å,
x = 270 MHz, and xsc = 10. (B) The plot of NOE (g) in driven NOE
experiment for the spin at x = a + b in the infinite chain for different ratio
of b/a such as 0.8 (-.-), 1.0 (-d-), 1.2 (-w-) as a function of time when the
spin at x = 0 is assumed to be saturated for all time. The parameters used
are a = 2 Å, x = 270 MHz, and xsc = 10.
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and

lð1; tÞ ¼ 0 ð13Þ
Substituting boundary conditions (11)–(13), Eq. (10) can
be written as

Lðx; sÞ ¼ � I0
z

s� 2ðqþ rÞ e
�qx ð14Þ

Eq. (14) is identical to Eq. (22) of [7] except the definition of q.
For equidistant spins, d = 0, and the q becomes identical to
[7]. Taking Inverse Laplace transform of Eq. (14), we get

lðx; tÞ

¼�I0
z

2
exp

dx
2D

� �
expðf2ðqþrÞgtÞ

�
exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4Dþ2ðqþrÞ
q

xffiffiffi
D
p

� �
erfc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4Dþ2ðqþrÞ
� �r

tþ x
2
ffiffiffiffi
Dt
p

� �

þexp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4Dþ2ðqþrÞ
q

xffiffiffi
D
p

� �
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4Dþ2ðqþrÞ
� �r

tþ x
2
ffiffiffiffi
Dt
p

� �
2
6664

3
7775;

ð15Þ

where erfc is the complementary error function [14]. Substi-
tuting Eq. (15) into Eq. (6), the difference of population as
a function of position and time is obtained as

Nðx; tÞ¼ � I0
z

2
exp

dx
2D

� �

�
exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4Dþ2ðqþrÞ
q

xffiffiffi
D
p

� �
erfc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4Dþ2ðqþrÞ
� �r

tþ x
2
ffiffiffiffi
Dt
p

� �

þexp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4Dþ2ðqþrÞ
q

xffiffiffi
D
p

� �
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4Dþ2ðqþrÞ
� �r

tþ x
2
ffiffiffiffi
Dt
p

� �
2
6664

3
7775.

ð16Þ
The transfer of magnetization for driven NOE case is pro-
portional to N (x, t) and can be calculated at different value
of x, such as

x ¼
nþ1

2
aþ n�1

2
b; n odd

n
2
aþ n

2
b; n even

( )
:

The variation of NOE obtained using N (x, t) given by Eq.
(16) is plotted in Figs. 3A and B for various values of xn viz.,
n = 1 and 2 taking x = 270 MHz, xsc = 10, a = 2Å and
b/a = 0.8,1.0, 1.2. It is clear from these figures that NOE
enhancement increases when the ratio b/a is less then 1 for
each spin. This is obvious as the NOE is 6th power depen-
dence of the inter-spin spacing, the spin which is close to
the saturated spin will always get more NOE transfer and
then it will dominate as compare to the spin which is compar-
atively far. Fig. 4 shows NOE (g) for different values of xsc

for b/a = 0.9, 1.0, and 1.1. Again the enhancement is more
for higher xsc (spin-diffusion limit) and for lower ratio of
b/a as expected.

This type of physical situation, where the inter-spin
spacing is not a constant but jumps to values ‘a’ and ‘b’
periodically as one moves along the chain, is found in
extended b sheet structure in peptide [1,9], where the
NH i � Ca

i�1 distance is of the order of 2.2 Å, while
the NH i � Ca

iþ1 is about 2.8 Å, as shown in Fig. 1, hence
the magnetization travels in one dimension but the inter-
spin distance is periodically bi-spaced. The NOE in such
cases can be calculated using Eq. (16). When b is equal to
a, the above results reduce to that presented earlier [7].

4. NOE for random inter-spin spacing

For a fixed inter-spin spacing a, the transfer of magneti-
zation for driven NOE case is given by [7],

Nðx; tÞ¼� I0
z

2

exp �x
ffiffiffiffiffiffiffiffiffiffi
2ðqþrÞ

D

q� �
erfc x

2
ffiffiffiffi
Dt
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðqþrÞ

pn o

þexp x
ffiffiffiffiffiffiffiffiffiffi
2ðqþrÞ

D

q� �
erfc x

2
ffiffiffiffi
Dt
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðqþrÞ

pn o
2
6664

3
7775;
ð17Þ



Fig. 4. The time dependence of g in the driven NOE experiment for the
spin at x = a in infinite chain for correlation factors xsc = 2 (-q-), 6 (-s-),
and 10 (-,-) with a = 2 Å, x = 270 MHz for the different ratio of b/a (A)
b/a = 0.9, (B) b/a = 1.0, and (C) b/a = 1.1.
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where

D ¼ ra2;

q ¼ W 0 þ 2W 1 þ W 2;

r ¼ W 2 � W 0.
Here, W’s are the transition probabilities given by Eq. (2).
In what follows we present a treatment similar to that pre-
sented in the preceding sections, but where the inter-spin
distances changes randomly. Let the inter-spin spacing a

be a random variable distributed normally around the
mean value a0 with variance D2 as shown in Fig. 5. There-
fore, the probability that the inter-spin spacing be a is given
by [14]

P ðaÞ ¼ 1ffiffiffiffiffiffi
2p
p

D
expf�ða� a0Þ2=2D2g. ð18Þ

The expectation value of transition probabilities is now giv-
en by

hW iðaÞi ¼ W i þ
21W i

a2
0

D2. ð19Þ

Similarly, the expectation value of the diffusion coefficient
D is given by,

hDðaÞi ¼ D 1þ 21
a2

D2

	 

ð20Þ

using Eqs. (19) and (20) in Eq. (17), we can obtain the
transfer of NOE for random inter-spin spacing. That
means we can still use Eq. (17), which gives NOE transfer
for equidistant spin system with the expectation values of
transition probabilities W’s and diffusion coefficient. It
has been plotted in Fig. 6 for different values of D. It is
clear from figure that as we increase the deviation of
inter-spin distance from its mean value, NOE enhancement
is sharp and increased. This is well expected as when we
choose the inter-spin spacing to be random, some spins
are very near and some spins can be far, but as the NOE
depends on the 6th power of the distance, those spins which
are near will be dominating and show up in overall NOE
enhancement whereas those spins which are far will not
be effective and can be ignored.

5. Conclusion

Spin-diffusion equation for bi-spaced periodic lattice has
been formed from the first principles and solved for driven
NOE case. This type of situation is found in secondary
structures such as extended b sheet structure in peptides.
It has been shown that NOE process can be modeled by
diffusive process even when chain is not equidistant and
the NOE intensity will depend on the ratio of inter-spin
spacing. Also, the solution is obtained and results are
plotted for the case when the inter-spin spacing is a random
variable with Gaussian distribution. It was found that if the
distance vector is random, it will affect overall NOE
intensity pattern and intensity will increased. These results
are theoretical and may prompt experimentalist to verify
these findings. Also, these equations can be used to
optimize protein conformations from the experimental
NOE data. For the future, we plan to extend these models
for two- and three-dimensional cases which are realistic
systems for protein.



Fig. 5. Symbolic representation of random inter-spin spacing in infinite chain. It is assumed that the distribution is Gaussian with variance D2.

Fig. 6. The plot of NOE (g) for the infinite chain with random inter-spin
spacing for the different value of D = 0.0 (-h-), 0.1a0 (-q-), 0.2a0 (-s-),
and 0.3a0 (-,-), where a0 is the mean inter-spin spacing. Other parameter
used are x = 2a, a = 2 Å, x = 270 MHz, and xsc = 10.
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Appendix A

For the purpose of optimizing protein conformation
using NOE data, we present our theoretical result (Eq.
(16)) in terms of NMR parameters which can be readily
used by optimizing programs. The NOE intensity at any
time at position x will be given by,

Nðx; tÞ ¼ � I0
z

2
expðA1xÞ

exp �
ffiffiffiffi
A2

D

q
x

� �
erfc �

ffiffiffiffiffi
A2

p
t þ x

2
ffiffiffiffi
Dt
p

� �
þ exp

ffiffiffiffi
A2

D

q
x

� �
erfc

ffiffiffiffiffi
A2

p
t þ x

2
ffiffiffiffi
Dt
p

� �
2
64

3
75;

where

A1 ¼
1� b

a

� �5

b 1þ b
a

� �4
� � ;
A2

D
¼ 1

b2
�

1� b
a

� �5

1þ b
a

� �4
� �
2
4

3
5

2

� 4

b2
� W 1 þ W 2

W 2 � W 0

�
1þ b

a

� �6

1þ b
a

� �4
;

D ¼ � 1

2
ðW 2 � W 0Þ

1

a4
þ 1

b4

� �
;

with

W 0 ¼ 1
10
c4�h2sc;

W 1 ¼
3

20
c4�h2 sc

1þ x2s2
c

� �
;

W 2 ¼
3

5
c4�h2 sc

1þ 4x2s2
c

� �

and

x ¼
nþ1

2
aþ n�1

2
b; n odd

n
2
aþ n

2
b; n even

( )
.
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